[[Calculus of variations MOC]]
# Functional derivative
Le $B$ be a [[Banach space|Banach subspace]] of $\Man^1(\Omega, \mathbb{K})$ where $\mathbb{K} = \mathbb{C}$ or $\mathbb{K} = \mathbb{R}$
and $F : B \to \mathbb{K}$ be a [[Functional]].
The **functional derivative** $\frac{\delta F}{\delta\rho}$ of $F$ at $\rho$ is a a function such that the [[functional differential]] is given by #m/def/anal/fun/var
$$
\begin{align*}
\delta F[\rho;\phi] = \int _{\Omega} \frac{\delta F}{\delta\rho}(x) \,\phi(x) \, dx
\end{align*}
$$
#
---
#state/develop | #lang/en | #SemBr